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Abstract-Assuming that the interface of two loosely bonded half-spaces, an elastic solid half-space
and a liquid-saturated porous solid half-space, permits a finite amount of slip, the problem of
reflection and refraction of plane seismic waves incident on such an interface is studied, It is further
assumed that stresses are continuous and a linear relation exists between the shearing stress and the
slip across the interface, Numerical results are exhibited in graphical form for different degrees of
bonding. Two limiting cases of smooth interface and bonded interface are shown to be special cases
of this general problem, It is observed that there is an attenuation of energy at a loosely bonded
interface which agrees fairly well with the results of the earlier studies.

INTRODUCTION

Biot (1956a, b, 1962a, b) studied the propagation of elastic waves in a fluid-filled porous
solid and showed that there are two dilatational waves, propagating with different velocities,
and one shear wave. Deresiewicz (1960), Deresiewicz and Rice (1962, 1964) and Deresiewicz
and Levy (1967), Geertsma and Smit (1961), Hajra and Mukhopadhyay (1982) discussed
the effect of boundaries on wave propagation in a liquid-saturated porous solid. Deresiewicz
and Skalak (1963) investigated the appropriate boundary conditions for the boundaries of
porous solids.

In the problems of calculating the reflection and transmission coefficients of elastic
waves at the interface between two half-spaces, it is usually assumed that the half-spaces
are in welded contact which is a reasonable assumption for most situations. In certain
situations, however, there are reasons for expecting that bonding is not completely fixed.
For instance, the viscous liquid present in the porous skeleton may cause the two media to
be loosely bonded. Several authors have attempted to incorporate the effect of imperfect
bonding in composite materials. Newmark (1951) modified the perfect interface conditions
and explicitly allowed slipping to occur. Similar boundary conditions have been used by
Murty (1975) to model the propagation of waves through a loosely-bonded interface by
assuming that the interface behaves like a dislocation which preserves the continuity of
traction while allowing a finite amount of slip. Jones and Whittier (1967) modelled the
wave propagation through a flexibly-bonded interface by allowing both slip and separation.
Elastic wave behaviour across linear slip interfaces was discussed by Schoenberg (1980).
Martin (1990) studied the linear models of imperfect interfaces between elastic bodies for
inclusions and laminated structure and a brief review of imperfect plane interfaces was
given therein. Olsson (1990) and Olsson et al. (1990) studied some elastodynamic scattering
problems.

In this paper, we shall be investigating the problem of reflection and refraction of plane
waves incident at a loosely-bonded interface between an elastic solid and a liquid-saturated
porous solid half-space. The amplitude and energy ratios are computed numerically from
the experimental data given by Fatt (1959) and Yew and Jogi (1976) for a kerosene­
saturated sandstone. The dissipation of energy for different degrees of bonding has been
shown. This investigation shows that energy is dissipated along the imperfect interfaces
while crossing from a porous medium to a simply elastic medium.

The existence of such a medium in the earth cannot be ruled out and so it is reasonable
to assume the boundary is loosely bonded. The results of this study may give better
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information about the porous layers saturated with oil and water in the crust of the earth.
It may be mentioned that the application of elastic waves for the detection and study of
flaws in materials is of considerable importance in non-destructive evaluations (Griffith,
1920).

BASIC ASSUMPTIONS

Murty (1975, 1976) defined a real parameter (bonding parameter) to which numerical
values can be assigned corresponding to a given degree of bonding between half-spaces and
discussed the particular cases of an ideally smooth and fully bonded interfaces cor­
responding to the values 0 and 00 of this bonding constant. The study is carried out under
the following basic assumptions:

(1) the half-spaces are homogeneous and isotropic;
(2) the traction is continuous across the interface ;
(3) a finite amount of slip can take place at the interface when periodic waves are

propagating;
(4) the slip at the interface is proportional to the local shearing stress. This assumption

implies that different degrees of looseness of the interface correspond to different values of
the constant of proportionality. This can be written as

Shearing stress at the interface = K x slip, (1)

where K is a suitable proportionality factor so that the vanishing of K corresponds to an
ideally smooth interface, and when K tends to infinity, the stress and strain remain finite
and the slip will tend to zero (bonded interface). The intermediate values of K represent a
loosely-bonded interface.

We assume the model to consist of a thin viscous liquid layer between an elastic solid
half-space and liquid-saturated porous solid half-space. Let T be the thickness of the layer
and ebe the coefficient of viscosity and T-+-O implies that the thickness of the liquid layer
is infinitesimally small. It can be assumed that the shearing stress at the interface is given
by

(ou)
!xz = e oz ' (2)

where uis the component of velocity parallel to the interface (the dot represents the time
derivative) and the partial derivative is taken along the normal to the interface. Equation
(2) can be written approximately as

(2a)

where (u - ue) is the jump in the x-component of velocity across the layer. Assuming the
wave motion to be time harmonic, eqn (2a) can be written as

(3)

where OJ is the angular frequency and the difference (u - ue) of the displacement components
parallel to the interface represents the "slip".

BASIC EQUATIONS

Biot's equations (1956) governing the displacements u of the skeleton and U of the
interstitial liquid, which together form the saturated porous medium, may be written as
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02 0
NV2u+grad [(D+N)e+Qe] = ot2[PIIU+P12U]+b ot (u-U),

02 0
grad [Qe+Re] = ot2[PI2U +P22U]-bo/u- U), (4)

where e = div u and e = div U.
D, N, Q and R are the elastic constants for the solid-fluid aggregate; PI I, PI2 and Pn

are dynamical coefficients related to density of solid matrix, density of interstitial liquid
and porosityp ; b is a dissipation function and is related to Darcy's coefficient ofpermeability
y by

(5)

where eis the fluid viscosity.
The constitutive equations for a liquid-saturated porous solid (Biot, 1956a) are given

by

T:ij = (De +Qe){)ij+2Neij, (i,j = 1,2,3)

and

T: = Qe+Re,

where T:ij are the stresses in the solid and T: that in liquid, and

e·· = 12 (u. +u··)Ii '.J J.I'

(6)

(7)

where e and 8 are the dilatation in the solid and liquid, respectively.
Following the assumptions for the porous material (Biot, 1956a) that Poiseuille flow

breaks down for frequencies higher than

(8)

where d' is the diameter of the pore and v = e/Pr is the kinematic viscosity. We introduce
a characteristic frequency

b
fc = 2npPr'

where b is given by (32ep/d,2) with the assumption that pores behave like circular tubes
with diameter d'.

In this case, we have

For the low frequency range, i.e. for the frequency '7 < It, we have

'7 It 41c < 1c = 0.15 .

For a homogeneous isotropic elastic solid (Bullen, 1963), the equation of motion can
be written as
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d d· 1 1 8
2
ue

(A+ 2,u) gra IV De -,u cur cur Ue = Pe 01 2 ' (9)

where Ue is the displacement vector; A, ,u are the Lame's constant and Pe is the density of
the solid.

Stresses (ae)ij in the elastic solid are related to the strain 8ij by the relation

(10)

where

We now consider a Helmholtz resolution of each of the two displacement vectors as:

U = grad <P +curl H,

U = grad 'II +curl G.

Substituting these displacements in eqns (4) and following Sharma and Gogna (1992), we
obtain

cv 2 +O;)<pj = 0, (j = 1,2)

(V 2 +oDH = 0,

where

A _ B+if-A
1- 2A .,

A _ B+if+A
2 - 2A '

A _ H( C+if )
3 - N Y22+ i! .

The other potentials can be written as

where

g+idf-AAj

,uj = h+idf ' (j = 1,2)

and

_ (YI2- if),u3 - - .'
Y22+ I!

(11)

(12)

(13)

It is evident from eqns (11) that in a liquid-saturated porous medium, we have two
dilatational waves along with one shear wave with phase velocities given by

(H)1/2/
Cj= P Re(A)l2), U=1,2,3). (14)
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The quantities with the subscript} = I correspond to the PI> dilatational wave of the first
kind (Biot, 1956a), those with} = 2, to the Pu, dilatational wave of second kind and the
quantities with subscript} = 3 correspond to the shear waves.

For a homogeneous isotropic elastic solid, considering the Helmholtz resolution for
the displacement

lie = grad cPe + curl 'l'e,

the potential functions are found to satisfy the wave equations

where

(X = JA+2f.l and f3 = r;;.
Pe \I~

FORMULAnON OF THE PROBLEM

(15)

(16)

We consider a model consisting of an isotropic homogeneous impervious elastic solid
half-space and a liquid-saturated porous solid half-space separating at a loosely bonded
plane interface z = 0 with the z-axis pointing into the liquid-saturated porous solid as shown
in Fig. I (a).

We shall consider here the case when the incident wave propagates through the liquid­
saturated porous solid (Medium I). Incident PI or Pn or SV wave in medium I will give
reflected PI> Pn and SV waves making complex angles Or, o~ and 0t with the normal to the
interface respectively and also transmitted P and SV waves in medium II at angles 0 I and
O2 respectively, as depicted in Fig. I (a).
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Fig. 1. Variation of nonnalized energy with incidence angle of PI wave for different values of the
bonding constant.
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Fig. l(a). Geometry of the problem.

The displacement potentials, in medium I, satisfying eqns (II) can be written as

<PI = A o exp [i{Ol (x sin O~-z cos O~) -rot}] +A] exp [i{o] (x sin OT+z cos 0T) -rot}],

<P2 = Bo exp [i{o2(xsin O~-z cos O~) - rot}] +B t exp [i{o2(x sin 01+ z cos (1) - rot}],

<P3 = Co exp [i {03(X sin O~- z cos O~) - rot}] +C I exp [i{03(X sin O~+z cos O~) - rot}],

(17)

where <P3 = (-H)y-
Ao (or Bo or Co), AI, B I and C t are the amplitudes of the incident PI (or PlJ or SV)

wave, reflected Ph Pu and SVwaves, respectively_
The displacements u = (u, 0, w) and U = (U,O, W) can be written in terms of potentials

as

O<PI O<P2 O<P3
U= ax + ox + oz '

a<Pl i)<P2 a<P3
w=-+---,

az oz ax

O<PI O<P2 O<P3
U = J.Lt ax +#2 ax +J.L3 oz '

a<Pl a<P2 a<P3
W=J.Lt-+J.L2--J.L3--Oz az ax

(18)

In medium II, the displacement potentials satisfying eqn (16) are given by

A.. A [- (x sin 0) - zcos 0 I )J
'1'0 = e exp lro - t ,

DC

\II [- (x sin O2 -z cos O2 )J
To = Be exp lro p - t _ (19)
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The displacement components in medium II are given as
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(20)

BOUNDARY CONDITIONS

We shall now discuss the boundary conditions along the loosely bonded interface z = 0
between a semi-infinite impervious elastic solid and a liquid-saturated porous half-space.
Following Deresiewicz and Skalak (1963) and Murty (1975), the boundary conditions are:

(1) continuity of the stresses and normal displacement across the interface z = 0;
(2) vanishing of the normal velocity of the liquid relative to the solid in the porous

aggregate. This assures us that liquid does not flow into the elastic solid, which is assumed
to be impervious, along the interface;

(3) shearing stress is proportional to the slip at the interface.

The boundary condition (3) can be written as

where

LXZ = -ikN(~())(U-Ue),

sm °
(21)

(22)

y= Vo~ I (Vok)
.. NT ' and () 0 = sin- w

is the angle of incidence, and Vo, the phase velocity of the incident wave, takes the values
Cb Cz, C3 for incident Ph Pu and SV waves, respectively.

It is convenient to introduce a variable 'P*, 0 ::::;; 'P* ::::;; 1, such that

'P*

'=(I-'P*)"

The range 0::::;;'::::;; 00 shall be mapped on the range 0::::;; '11* ::::;; 1. Thus '11* = 0
corresponds to a smooth interface and '11* = 1 corresponds to a welded interface between
half-spaces. 'P* may be considered as a bonding constant.

The boundary conditions at the interface z = 0 can be written as

(1) Lzz+L = (ae)",

(3) W = We,

'11* 1
(5) Lxz = -ikN (1-'11*) sin()o (u-ue)·

(2) Lxz = (ae)xz,

(4) w- W= 0,
(23)

Following Schoenberg (1971), Snell's law may be written as

where

* wV j = -;r' (j = 1,2,3).
}

(24)

Making use of eqns (17)-(20), the boundary conditions (23) give rise to a set of five
non-homogeneous equations, which on solving give the amplitude ratios of reflected and
transmitted waves. A computer program was developed for carrying out the calculations.

Following Achenbach (1973), the energy ratios E;, (i = 1,2, ... ,5), for the reflected
Ph Pu, SV;lefracted P and SVwaves respectively, are obtained as:

$AS 3O:18-E

Ej = <P"f>/<P~>, (i = 1,2, ... ,5), (25)
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where for

and

we have
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(26)

<PT> == !w4[(P+2~,uIR +R,u7R +R,url)(qIRCIR +qllCll))IZtl z,

<P!> == 1W4[(P+2Q,uZR +R,u~R +R,u~I)(qZRCZR +qzlczl))IZzIZ,

<P!> == 1W4N(q3RC3R +q3lc31)IZ3IZ,

<Pt> == !W4Pe:
o

J(Vo/oc)Z-sin Z 80 1Z4 1
z,

<PD == !w4 Pe :0 J(Vo/IW -sinz 801Z51
z
,

<PD == !w4[(P+2Q,ujR +R,u7R +R,u1)(qjRCjR+qjlCjI)) ,

in which

{
I for incident PI wave

j == 2 for incident Pu wave

and

(27)

IZil, (i == 1,2, ... ,5), are the amplitude ratios of reflected P(, PlI , SV; refracted P and SV
waves to that of incident wave, respectively.

NUMERICAL RESULTS AND DISCUSSION

For computing the amplitude and energy ratios, we consider the model consisting of
kerosene-saturated sandstone loosely bonded with granite which is assumed to be an
impervious elastic solid.

Following the experimental results given by Yew and Jogi (1976) for a kerosene­
saturated sandstone, we take the following values of the relevant parameters:

D == 0.445>< 10 10 N m- z,

Q == 0.0744 X 10 10 N m- z,

R == 0.0326 X 10 10 N m- z,

N == 0.2765 X 10 10 N m- Z
,

Ps == 2.6 X 103 kg m- 3
,

Pc == 0.82x 103 kgm- 3

and
P1Z == -O.OOOlp,

where P == 2.1372 x 103 kg m - 3 is the mass density of the aggregate.
The elastic parameters for granite (Bullen, 1963) are given by

A. == 2.238 x 10 ION m - z,

,u == 2.992>< 10 10 N m-z'

Pe == 2.65x 103 kgm- 3
•
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Fig. 2. Variation of energy ratios with incidence angle of PI wave for different values of the bonding
constant.

Corresponding to the above given values of parameters, the energy ratios of different
reflected and refracted waves for different values of bonding constant are computed using
the relations (25)-(27). The results have been discussed for the following two cases.

Case (i) : Incident PJ wave
Variation of normalized energy (sum of energy ratios of different reflected and trans­

mitted waves to that of incident P J wave) with the angle of incidence for different values of
'1'* ranging from 0 to 1 is shown in Fig. I. The energy dissipation is negligible for '1'* = 0.0
and '1'* = 1.0 as expected in the case ofsmooth interface and welded contact. For the loosely
bonded interface ('1'* 0.75,0.50,0.40,0.25), the energy is dissipated. The dissipation is
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Fig. 3. Variation ofenergy ratios with incidence angle ofPI wave for different values of the bonding
constant.
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Fig. 4. Variation ofenergy ratios with incidence angle of PI wave for different values of the bonding
constant.

maximum when '1'* = 0.5 and it decreases when we move either from 0.5 to 1.0 or from
0.5 to 0.0, i.e. when the loosely bonded interface approaches an ideal interface. Thus one
can say that a loosely bonded interface acts as an absorber of energy while a smooth
interface and a fully bonded interface absorb no energy.

The nature of dependence of energy ratios of reflected and transmitted waves is shown
in Figs 2-6. It is noted that the energy ratio of each of the reflected and refracted waves is
different for different values of '1'* except at normal and grazing incidence. It is clear from
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Fig. 5 that the critical angle of the incident PI wave for the refracted P wave is nearly 25°.
The critical angle for a refracted SVwave is found to be nearly 45° (Fig. 6).

Case (ii) : Incident SV wave
The dependence of normalized energy on the angle of incidence of the incident SV

wave for different degrees oflooseness ('¥* = 0.0, 0.25, 0.50, 0.75, 1.0) has been shown in
Fig. 7. The energy is dissipated as we move away from the condition of ideal interface

1.20

---, = 1.0 • 0.0

---------, = 0.5

--'-...._-... ~ = O. 75

-----, = 0.25

1.00 +----------------------:-
/:':'"

0.20

ba::w
z
w

8 0.60

N

~
::;;'
a::
o
z 0.40

0.80

0.00 +-'''T''T'T"T""T"T"TT'TTrrrr''''''''''''''''''''''''T''T'T"T'T"T""T"T"TT'TTrrrr...,...,...,...,..."
0.0 10.0 20.0 30.0 40.0 50.0 60.0 10.0 80.0 90.0

ANGLE OF INC,DENCE ( in degrees )

Fig. 7. Variation of normalized energy with incidence angle of SVwave for different values of the
bonding constant.
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(smooth or welded) to the loosely bonded interface. It is evident from the figure that tQere
is a sharp increase in dissipation at 10°, 200 and 300

, angle of incidence for '1'* = 0.25, 0.50
and 0.75. It may be noted that these are the critical angles for refracted P, refracted SV
and reflected PI waves, respectively.

The energy ratios of different reflected and refracted waves for different values of the
bonding parameter are shown in Figs 8-12. As the velocities of reflected PI> refracted P
and refracted SV waves are greater than the velocity of the incident SV wave, three
critical angles of incident SV wave exist. These angles are approximately 300 ,10° and 200
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respectively. The critical angle for a reflected PI wave in the porous medium is not as sharp
as in the case of the elastic medium. The energy transmitted to the PI wave is not zero
beyond the critical angle (though it is very small).

CONCLUSIONS

In this paper, the theoretical problem of the reflection and refraction of plane waves
in a medium consisting of a liquid-saturated porous solid loosely bonded with an elastic
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Fig. 12. Variation of energy ratios with incidence angle of SV wave for different values of the
bonding constant.

solid has been studied and detailed numerical calculations have been performed for the case
of incident Ph Pn and SV waves for different degrees of looseness of contact between the
two half-spaces considered. The cases of smooth interface and welded contact between the
two half-spaces have been obtained as particular cases. It has been observed that a loosely
bonded interface acts as an absorber of energy. The amplitude ratios and energy ratios of
different reflected and refracted waves change with the bonding parameter qt*. It can be
concluded that the deviation from the assumption of welded interface to loosely bonded
interface affects the reflection-transmission phenomenon.
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